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LETTER TO THE EDITOR 
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Abstract. A computer simulation study is presented for directed growth in a three- 
dimensional kinetic growth model for irreversible gelation. Finite size scaling theory is 
used to extract critical exponents for the gel-sol transition. In contrast to percolation, the 
exponents for directed and undirected gelation appear to be the same. 

The gel-sol transition has been the subject of extensive study for several decades. The 
gelation process was first described by Flory (1941) and Stockmayer (1943, 1944) in 
terms of percolation (Fisher and Essam 1961) on a Cayley tree. More recently random 
percolation of a real lattice was proposed by de Gennes (1976) and Stauffer (1976) as 
a better description since it included loop formation and excluded volume effects. 
Although many details of percolation models do not alter the nature of the transition, 
it is known that directed percolation models have different critical exponents than 
their undirected counterparts (Redner 1983, Kinzel 1983). Recent computer simulation 
studies of kinetic growth models by HLS (Hermann et al 1982, 1983) have yielded 
critical exponents for the bulk properties which are indistinguishable from those found 
for random percolation. In this letter we present results of a computer simulation 
study of a directed growth model; these results will be compared with those for directed 
percolation. 

We use a kinetic growth model which is similar to that described by HLS. We 
consider growth on a L x L x L simple cubic lattice with periodic boundary conditions. 
Bifunctional monomers of concentration cb and tetrafunctional monomers of concentra- 
tion c, = 1 - cb are placed on the lattice randomly. Initiators, each of which have one 
free bond, are placed on the lattice randomly with concentration cI and act as the 
active centres for growth. Note that the definition of initator concentration is different 
from that of HLS; here cI =number of initiators/total number of lattice sites; in HLS 
cI was normalised by the number of bonds. An active centre may form a bond to a 
randomly chosen nearest-neighbour site and the active centre is transferred to the 
newly bonded site if there is no radical already present; otherwise the two will annihilate 
each other. Growth thus proceeds by forming bonds along restricted random walk 
trajectories. In our directed growth model the active centres attempt to move only in 
+ X ,  + Y,  or +Z directions (with equal probabilities) whereas in HLS the active centres 
attempt to move in all six directions (*X,  f Y, *Z) with equal probability. Growth 
proceeds until all the active centres are annihilated or trapped and then another sample 
is grown. We have obtained data for L s 9 0  with up to 500 growth samples. 
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The data for p + p c  were analysed using the standard singuJar forms for the gel 
fraction G and the second moment of the cluster size distribution x: 

P - P c  - y  x = C ,  - I Pc I G = B ( y ) O ,  P’PO 

where C, and C- are the critical amplitudes above and below the gel point respectively. 
Finite size scaling plots (figure 1) were used to ensure that the best possible exponent 
estimates were obtained (see HLS for details). In figure 1 we show plots of log GLP/”  
and log X L - ~ ’ ”  against log[( p - p c / p c ) L ” ” ]  which were the best quality we could obtain 
for cb = 0.1, cI = (The ‘tails’ which were found for large values of the scaling 
variable are a consequence of the values of p being outside of the asymptotic critical 
region.) The exponents obtained for x were y = 1 .SO, v = 0.90, and the amplitude ratio 
C-/ C, - 5.0. The finite size scaling analysis of the gel fraction yielded p = 0.4, v = 0.90. 
These exponents and the ratio C-/C+ are (within error bars) equal to those for 
undirected gelation (see HLS) and p and y essentially the same as for undirected 
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Figure 1. Finite size scaling plots of ( a )  log GLB/’ and ( b )  logxL-y / ’  against log[(p- 
p , ) / p , ] L ’ / ”  for lattices with L=30 (O) ,  40 (A) ,  60 (A), and 90 (0). Averages are taken 
over growth samples for L = 90 and 500 samples otherwise with cb = 0.1, c, = 0.01. Data are 
fitted with p c  = 0.059 and undirected, random percolation exponents (Stauffer 1984) j3 = 0.4, 
y =  1.8, u=0.9.  The broken lines show the asymptotic slopes equal to j3 for ( a )  and - y  
for ( b ) .  
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percolation (Stauffer 1985). In contrast we found that finite size scaling plots made 
using the exponent values p = 0.6, y = 1.58, vlI = 1.27 (or with v L  = 0.74 or vi; = 
(1/  vIJ + 2/ v,)/3] appropriate for directed percolation (Kinzel 1983, Redner 1983) 
showed distinct systematic deviations from scaling behaviour. (In principle, a highly 
accurate finite size scaling analysis should include two scaling variables representing 
directions parallel and perpendicular to the directed growth direction.) Within the 
errors of the analyses we therefore find no difference between the exponents for directed 
and undirected kinetic gelation models. 

As restrictions on growth direction a chain of bonded sites may not fold back on 
itself and loops may form only when growing chains intersect. The formation of bonds 
thus tends to enhance the maximum spatial extent of the clusters more rapidly in 
directed, as opposed to undirected, growth and the gel point is thus reached for smaller 
values of p .  This behaviour seems to be similar to that observed in a recent experiment 
(Sinclair et a1 1983) but in a somewhat different context (polydiacetylene 4-butoxycar- 
bonyl-methylurethane in toluene at low temperatures) where for gelation to occur the 
polymer must be in its fully extended rod-like conformation. A detailed study of the 
generalised biased growth and chain/rod preferred reactions in the framework of recent 
theoretical (Wheeler et a1 1983) and experimental (Sinclair et a1 1983, Casalnuovo 
and Heeger 1984) investigations are in progress and will be published elsewhere. 

We would like to thank D Stauffer, D Matthews-Morgan, F Family and H J Hermann 
for helpful discussions. This work was supported in part by NSF. 
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